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Abstract. An n-isometry, n ≥ 2, is an n-tuple commuting isometries (V1, . . . , Vn) on a
Hilbert space H such that if V is a shift, where

V =
n

Π
i=1

Vi.

In this paper we provide an analytic representations of n-isometries. Also we present a
description of joint invariant subspaces for n-isometries.

1. Introduction

Let H be a Hilbert space. Let (V1, . . . , Vn) be an n-tuple of commuting isometries on H.
In this note, we always assume that n ≥ 2 is a positive integer. A closed subspace S ⊆ H is
said to be joint invariant for (V1, . . . , Vn) if ViS ⊆ S, i = 1, . . . , n. We say that (V1, . . . , Vn) is
an n-isometry if V is a shift, where

V =
n

Π
i=1

Vi.

Recall that an isometry X on H is said to be a shift if X∗m → 0 as m → ∞ in the strong
operator topology or, equivalently, if X on H has no unitary summand. Moreover, if X is
a shift, then X on H and Mz on H2

W(X)(D) are unitarily equivalent, where W(X) = kerX∗

and H2
W(X)(D) is the W(X)-valued Hardy space and Mz is the multiplication operator by the

coordinate function z on H2
W(X)(D) (see Section 2).

In this paper we aim to address two basic issues of n-isometries: (i) analytic and canonical
models for n-isometries, and (ii) classification of joint invariant subspaces for n-isometries.
To that aim, we consider the initial approach by Berger, Coburn and Lebow [3] from a more
modern point of view (due to Bercovici, Douglas and Foias [2]). In our approach we will also
follow the recent paper [11].

Our first main result, Theorem 2.1, states that if (V1, . . . , Vn) is an n-isometry on a Hilbert
spaceH, then (V1, . . . , Vn) and (MΦ1 , . . . ,MΦn) are unitarily equivalent, where (MΦ1 , . . . ,MΦn)
is a canonical model n-isometry on some vector-valued Hardy space H2

W(D). The model n-
isometries are defined as follows (see Bercovici, Douglas and Foias [2]). Consider a Hilbert
space E , unitary operators {U1, . . . , Un} on E , and orthogonal projections {P1, . . . , Pn} on E .
Let {Φ1, . . . ,Φn} ⊆ H∞

B(E)(D) be bounded B(E)-valued holomorphic functions (polynomials)
on D, where

Φi(z) = Ui(P
⊥
i + zPi) (z ∈ D),
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and i = 1, . . . , n. Then the n-tuple of multiplication operators (MΦ1 , . . . ,MΦn) on H2
E(D) is

called a model n-isometry if the following conditions are satisfied:
(a) UiUj = UjUi for all i, j = 1, . . . n;
(b) U1 · · ·Un = IE ;
(c) Pi + U∗

i PjUi = Pj + U∗
j PiUj ≤ IE for all i ̸= j; and

(d) P1 + U∗
1P2U1 + U∗

1U
∗
2P3U2U1 + · · ·+ U∗

1U
∗
2 · · ·U∗

n−1PnUn−1 · · ·U2U1 = IE .
Throughout the paper, given a Hilbert space H and a closed subspace S of H, PS will

denote the orthogonal projection of H onto S. We also set

P⊥
S = IH − PS .

In [2], motivated by Berger, Coburn and Lebow [3], Bercovici, Douglas and Foias proved the
following result: An n-isometry is unitarily equivalent to a model n-isometry. Equivalently,
given an n-isometry (V1, . . . , Vn) on H, one can solve the above equations (a)-(d) for some
Hilbert space E , unitary operators {U1, . . . , Un} on E , and orthogonal projections {P1, . . . , Pn}
on E . Here, in Theorem 2.1, we give an explicit and canonical solution to above problem.
This also gives a new proof of Bercovici, Douglas and Foias theorem.

On the one hand, our model n-isometry is explicit and canonical. On the other hand,
our proof is perhaps more computational and less conceptual than the one in [2]. Another
advantage of our approach is the proof of a list of useful equalities related to commuting
isometries, which can be useful in other contexts.

Our second main result concerns a characterization of joint invariant subspaces of model
n-isometries. To be precise, let W be a Hilbert space, and let (MΦ1 , . . . ,MΦn) be a model
n-isometry on H2

W(D). Let S be a closed subspace of H2
W(D). In Theorem 4.1, we prove that

S is a joint (MΦ1 , . . . ,MΦn) invariant subspace if and only if there exist a Hilbert space W∗,
an inner function Θ ∈ H∞

B(W∗,W)(D) (the Beurling-Lax-Halmos inner multiplier corresponding

to the shift invariant subspace S of H2
W∗(D)) and a model n-isometry (MΨ1 , . . . ,MΨn) on

H2
W∗(D) such that

S = ΘH2
W∗(D),

and
ΦiΘ = ΘΨi,

for all i = 1, . . . , n.
The paper is organized as follows. In Section 2 we study and review the analytic construc-

tion of n-isometries. In Section 3 we study more closely at the n-isometries and examine a
canonical (or model) n-isometry. The proof of the invariant subspace theorem is contained in
Section 4.

2. n-isometries

In this section, following [11], we derive an explicit analytic representation of n-isometries.
For motivation, let us recall that if X on H is an isometry, then X is a shift operator if and
only if X and Mz on H2

W(X)(D) are unitarily equivalent. Explicitly, if X is a shift on H, then

H =
∞
⊕

m=0
XmW(X),
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where

W(X) = kerX∗ = H⊖XH,

is the wandering subspace forX (see Halmos [7]). Hence the natural map ΠX : H → H2
W(X)(D)

defined by

ΠX(X
mη) = zmη,

for all m ≥ 0 and η ∈ W(X), is a unitary operator and

ΠXX = MzΠX .

We call ΠX the Wold-von Neumann decomposition of the shift X (see [11]).
Now let (V1, . . . , Vn) be an n-isometry. We will use the following notations:

V =
n

Π
i=1

Vi,

and

Ṽi = Π
j ̸=i

Vi,

and for simplicity of notation we set

W = W(V ),

and

W̃i = W(Ṽi),

for all i = 1, . . . , n. Clearly

Ṽn = V.

Let ΠV : H → H2
W(D) be the Wold-von Neumann decomposition of V . Then

ΠV ViΠ
∗
V ∈ {Mz}′,

and hence there exists Φi ∈ H∞
B(W)(D) such that

ΠV Vi = MΦi
ΠV ,

for all i = 1, . . . , n. We now proceed to compute the bounded analytic functions {Φj}nj=1.
Our method follows the construction in [11]. In fact, a close variant of Theorem 2.1 below
follows from Theorems 3.4 and 3.5 of [11]. We will only sketch the construction, highlighting
the essential ingredients for our present purpose.

Let j ∈ {1, . . . , n}, w ∈ D and η ∈ W . Then

Φj(w)η = (MΦj
η)(w)

= (ΠV VjΠV η)(w)

= (ΠV Vjη)(w),

But

IH = PW̃j
+ ṼjṼ

∗
j ,

yields that

Vjη = VjPW̃j
η + V Ṽ ∗

j η,
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and thus

ΠV Vjη = ΠV (VjPW̃j
η + V Ṽ ∗

j η)

= ΠV (VjPW̃j
η) + ΠV (V Ṽ ∗

j η)

= VjPW̃j
η +MzṼ

∗
j η,

as ΠV V = MzΠV and V ∗(Vj(I − ṼjṼ
∗
j )V

∗
j ) = 0. Therefore, it follows that

Φj(w)η = VjPW̃j
η + wṼ ∗

j η.

Since W = ṼjWj ⊕ W̃j, we deduce that

Φj(w) = Vj|W̃j
+ wṼ ∗

j |ṼjWj
.

Finally, W = Wj ⊕ VjW̃j implies that

Uj =

[
Ṽ ∗
j |ṼjWj

0

0 Vj|W̃j

]
:
ṼjWj

⊕
W̃j

→
Wj

⊕
VjW̃j

,

is a unitary operator on W . Therefore

Φj(w) = Uj(PW̃j
+ wP⊥

W̃j
) (w ∈ D).

Note that it follows from the definition of Uj that

Uj = (VjPW̃j
+ Ṽj

∗
)|W .

This and

(2.1) VjPW̃j
= PWVj,

yields

Uj = (PWVj + Ṽj
∗
)|W .

Summarizing the discussion above, we have the following:

Theorem 2.1. Let (V1, . . . , Vn) be an n-isometry on a Hilbert space H. If (MΦ1 , . . . ,MΦn)
on H2

W(D) is the representation of (V1, . . . , Vn), then

Φj(z) = Uj(PW̃j
+ zP⊥

W̃j
)|W ,

for all z ∈ D, where
Uj = (PWVj + Ṽj

∗
)|W .

is a unitary operator on W and j = 1, . . . , n.

In the following section, we will explore the coefficients of Φj, j = 1, . . . , n, in more details.
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3. Model n-isometries

In this section, we propose a canonical model for n-isometries. We study the coefficients of
the one-variable polynomials in Theorem 2.1 more closely and prove that the corresponding
n-isometry (MΦ1 , . . . ,MΦn) on H2

W(D) is a model n-isometry (see Section 1 for the definition).
We again point out that the above assertion follows from Bercovici, Douglas and Foias [2]
and our presentation below is more explicit and influenced by the refinements from [11].

Let (V1, . . . , Vn) be an n-isometry on a Hilbert space H. Consider the analytic representa-
tion (MΦ1 , . . . ,MΦn) on H2

W(D) of (V1, . . . , Vn) as in Theorem 2.1. First we prove that {Uj}nj=1

is a commutative family. Let p, q ∈ {1, . . . , n} and p ̸= q. As W = kerV ∗, it follows that

Ṽ ∗
p Ṽ

∗
q |W = 0.

Then using (2.1) we obtain

UpUq = (PWVp + Ṽ ∗
p )(PWVq + Ṽ ∗

q )|W
= (PWVpPWVq + Ṽ ∗

p PWVq + PWVpṼ
∗
q )|W

= (PWVpVq + Π
i̸=p,q

V ∗
i PW̃q

+ VpPW̃p
Ṽ ∗
q )|W

= (PWVpVq + ( Π
i̸=p,q

V ∗
i )(PW̃q

+ ṼqPW̃p
Ṽ ∗
q ))|W

= (PWVpVq + ( Π
i̸=p,q

V ∗
i ))|W ,

as (ṼqPW̃p
Ṽ ∗
q + PW̃q

)|W = IW , and hence

UpUq = UqUp,

follows by duality. Now if I ⊆ {1, . . . , n}, then the same line of arguments, as above, along
with the fact that

PW( Π
i∈I

Vi)PW = PW( Π
i∈I

Vi),

yields

(3.1) Π
i∈I

Ui = (PW( Π
i∈I

Vi) + ( Π
i∈Ic

V ∗
i ))|W .

In particular, since PWV |W = 0, we have that
n

Π
i=1

Ui = IW .

The following lemma may be of independent interest.

Lemma 3.1. Fix 1 ≤ j ≤ n. Let I ⊆ {1, . . . , n}, and let j ∈ I. Then

( Π
i∈I

Ui)P
⊥
W̃j

( Π
i∈I

U∗
i ) = ( Π

i∈I\{j}
Vi)PWj

( Π
i∈I\{j}

V ∗
i )|W .

Proof. Note that W ⊖ W̃j = ṼjWj ⊆ W . Then

P⊥
W̃j

= Ṽj(I − VjV
∗
j )Ṽ

∗
j .
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By once again using the fact that V ∗|W = PWV |W = 0, and by (3.1), one sees that

(Π
i∈I

Ui)P
⊥
W̃j

( Π
i∈I

U∗
i ) = [PW( Π

i∈I
Vi) + ( Π

i∈Ic
V ∗
i )]Ṽj(I − VjV

∗
j )Ṽ

∗
j [( Π

i∈I
V ∗
i ) + PW( Π

i∈Ic
Vi)]|W

= ( Π
i∈Ic

V ∗
i )P

⊥
W̃j

PW( Π
i∈Ic

Vi)|W

= ( Π
i∈Ic

V ∗
i )P

⊥
W̃j

( Π
i∈Ic

Vi)|W

= ( Π
i∈Ic

V ∗
i )Ṽj(I − VjV

∗
j )Ṽ

∗
j ( Π

i∈Ic
Vi)|W

= ( Π
i∈I\{j}

Vi)PWj
( Π
i∈I\{j}

V ∗
i )|W .

This completes the proof of the lemma.

Let p, q ∈ {1, . . . , n}, and let p ̸= q. A computation similar to the proof of the above lemma
yields that

U∗
pP

⊥
W̃q

Up = ( Π
i ̸=p,q

Vi)PWq( Π
i̸=p,q

V ∗
i ).

Then

(P⊥
W̃p

+ U∗
pP

⊥
W̃q

Up) = [Ṽp(I − VpV
∗
p )Ṽ

∗
p + ( Π

i ̸=p,q
Vi)PWq( Π

i̸=p,q
V ∗
i )]|W

= ( Π
i̸=p,q

Vi)(VqV
∗
q + PWq)( Π

i ̸=p,q
V ∗
i )|W

= ( Π
i̸=p,q

Vi)( Π
i̸=p,q

V ∗
i )|W

= PWPW̃p,q
|W ,

where W̃p,q = ran (Πi̸=p,q Vi). Therefore

(P⊥
W̃p

+ U∗
pP

⊥
W̃q

Up) = (P⊥
W̃q

+ U∗
qP

⊥
W̃p

Uq) ≤ IW .

Finally, let 1 ≤ j ≤ n− 1 and Ij = {j, . . . , n− 1}. Then Lemma 3.1 implies

( Π
i∈Ij

Ui)P
⊥
W̃j

( Π
i∈Ij

U∗
i ) = [( Π

i∈Ij+1

Vi)( Π
i∈Ij+1

V ∗
i )− ( Π

i∈Ij
Vi)( Π

i∈Ij
V ∗
i )]|W .

This and
P⊥
W̃n

= ṼnṼ
∗
n − V V ∗,

implies that
n−1∑
j=1

( Π
i∈Ij

Ui)P
⊥
W̃j

( Π
i∈Ij

U∗
i ) + P⊥

W̃n
= (I − V V ∗)|W ,

that is
n−1∑
j=1

( Π
i∈Ij

Ui)P
⊥
W̃j

( Π
i∈Ij

U∗
i ) + P⊥

W̃n
= IW .

Multiplying both sides by Π
n−1
i=1 Ui on the right and Π

n−1
i=1 U∗

i on the left gives

P⊥
W̃1

+ U∗
1P

⊥
W̃2

U1 + U∗
1U

∗
2P

⊥
W̃2

U2U1 + · · ·+ (
n−1

Π
i=1

U∗
i )P

⊥
W̃n

(
n−1

Π
i=1

Ui) = IW .
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We summarize the above as follows.

Theorem 3.2. If (V1, . . . , Vn) be an n-isometry on a Hilbert space H, then
(a) UpUq = UqUp for p, q = 1, . . . n,
(b)

∏n
p=1 Up = IW ,

(c) (P⊥
W̃i

+ U∗
i P

⊥
W̃j

Ui) = (P⊥
W̃j

+ U∗
j P

⊥
W̃i

Uj) ≤ IW ,

(d) P⊥
W̃1

+ U∗
1P

⊥
W̃2

U1 + U∗
1U

∗
2P

⊥
W̃2

U2U1 + · · ·+ (Π
n−1
i=1 U∗

i )P
⊥
W̃n

(Π
n−1
i=1 Ui) = IW .

As a corollary, we have:

Corollary 3.3. Let H be a Hilbert space and (V1, . . . , Vn) be an n-isometry on H. Let
(MΦ1 , . . . ,MΦn) be the n-isometry as constructed in Theorem 2.1, and let (MΨ1 , . . . ,MΨn)
on H2

W̃(D), for some Hilbert space W̃, unitary operators {Ũi}ni=1 and orthogonal projections

{Pi}ni=1 on W̃, be a model n-isometry. Then:
(a) (MΦ1 , . . . ,MΦn) is a model n-isometry.
(b) (V1, . . . , Vn) and (MΦ1 , . . . ,MΦn) are unitarily equivalent.
(b) (V1, . . . , Vn) and (MΨ1 , . . . ,MΨn) are unitarily equivalent if and only if there exists a

unitary operator W : W → W̃ such that WUi = ŨiW and WPi = P̃iW for all i = 1, . . . , n.

Proof. The first part is a direct consequence of the previous theorem. The second part is easy
and readily follows from Theorem 4.1 in [11] or Theorem 2.9 in [2].

Combining this corollary with Theorem 3.2, we have the following characterization of com-
mutative isometric factors of shift operators.

Corollary 3.4. Let E be a Hilbert space, and let {Φi}ni=1 ⊆ H∞
B(E)(D) be a commutative family

of isometric multipliers. Then

Mz =
n

Π
i=1

MΦj
,

or, equivalently
n

Π
i=1

Φj = zIE ,

if and only if, up to unitary equivalence, (MΦ1 , . . . ,MΦn) is a model n-isometry.

In other words, zIE factors as n commuting isometric multipliers {Φi}ni=1 ⊆ H∞
B(E)(D) if

and only if there exist unitary operators {Ui}ni=1 on E and orthogonal projections {Pi}ni=1 on
E satisfying the properties (a) - (d) in Theorem 3.2 such that Φi(z) = Ui(P

⊥
i + zPi) for all

i = 1, . . . , n.

4. Joint Invariant Subspaces

Let W be a Hilbert space. Let (MΦ1 , . . . ,MΦn) be a model n-isometry on H2
W(D), and let

S be a closed joint (MΦ1 , . . . ,MΦn) invariant subspace of H2
W(D), that is

MΦi
S ⊆ S,

for all i = 1, . . . , n. Then (MΦ1 |S , . . . ,MΦn |S) is an n-isometry on S, and hence by Corollary
3.3, there exists a model n-isometry (MΨ1 , . . . ,MΨn) on H2

W̃(D), for some Hilbert space W̃ ,
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such that (V1|S , . . . , Vn|S) and (MΨ1 , . . . ,MΨn) are unitarily equivalent. The main purpose
of this section is to describe the joint invariant subspaces for (MΦ1 , . . . ,MΦn) in terms of the
model n-isometry (MΨ1 , . . . ,MΨn).

As a motivational example, consider the classical n = 1 case. Here the model 1-isometry
is a shift operator Mz on H2

W(D) for some Hilbert space W . Let S be a non-trivial closed
subspace of H2

W(D). Then by the Beurling [4], Lax [9] and Halmos [7] theorem, S is shift
invariant if and only if there exist a Hilbert space W∗ and an inner function Θ ∈ H∞

B(W∗,W)(D)
such that

S = ΘH2
W∗(D).

Moreover, in this case, if we set

V = Mz|S ,
then V on S and Mz on H2

W∗(D) are unitarily equivalent. This follows directly from the above
representation of S. Indeed, it follows that X = MΘ : H2

W∗(D) → ranMΘ = S is a unitary
operator and

XMz = V X.

Turning to the case n > 1, let S be a closed invariant subspace of H2
W(D) and let

(MΦ1 , . . . ,MΦn) be a model n-isometry on H2
W(D). From

n

Π
j=1

MΦj
= Mz,

we see that S is a shift invariant subspace of H2
W(D) and therefore by Beurling, Lax and

Halmos theorem, there exist a Hilbert space W∗ and an inner function Θ ∈ H∞
B(W∗,W)(D) such

that S can be represented as

S = ΘH2
W∗(D),

If 1 ≤ j ≤ n, then ΦjS ⊆ S implies that

ran (MΦj
MΘ) ⊆ ran MΘ,

and so by Douglas’s range and inclusion theorem

ΦjΘ = ΘΨj,

for some Ψj ∈ H∞
B(W∗)

(D). Note that MΦj
MΘ is an isometry and ∥ΘΨjf∥ = ∥Ψjf∥ for each

f ∈ H2
W∗(D). But then

∥Ψjf∥ = ∥f∥,
and it follows that Ψj is an inner function, and hence MΨj

= M∗
ΘMΦj

MΘ. So

n

Π
i=1

MΨi
=

n

Π
i=1

(M∗
ΘMΦi

MΘ),

Now

MΘM
∗
ΘMΦj

MΘ = MΦj
MΘ.
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as ΦjΘH2
W∗(D) ⊆ H2

W(D). Consequently
n

Π
j=1

MΨj
= M∗

Θ(
n

Π
j=1

MΦj
)M∗

Θ

= M∗
ΘMzMΘ

= M∗
ΘMΘMz

= Mz,

that is, (MΨ1 , . . . ,MΨn) is an n-isometry on H2
W∗(D). Therefore, we have the following theo-

rem:

Theorem 4.1. Let W be a Hilbert space. Let (MΦ1 , . . . ,MΦn) be an n-isometry on H2
W(D),

and let S be a closed subspace of H2
W(D). Then S is a joint (MΦ1 , . . . ,MΦn) invariant subspace

if and only if there exist a Hilbert space W∗, an inner function Θ ∈ H∞
B(W∗,W)(D) and an n-

isometry (MΨ1 , . . . ,MΨn) on H2
W∗(D) such that

S = ΘH2
W∗(D),

and
ΦjΘ = ΘΨj,

for all j = 1, . . . , n.

It is curious to note that the content of Theorem 4.1 is related to the question [1] and its
answer [15] on the classifications of invariant subspaces of Γ-isometries. We also refer to the
recent paper [10] for a representation of shift invariant subspaces of the Hardy space over unit
polydisc.
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