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ABSTRACT. An n-isometry, n > 2, is an n-tuple commuting isometries (Vi,...,V,) on a
Hilbert space H such that if V' is a shift, where

n
V=1 V.
=1

In this paper we provide an analytic representations of n-isometries. Also we present a
description of joint invariant subspaces for n-isometries.

1. INTRODUCTION

Let H be a Hilbert space. Let (Vi,...,V,) be an n-tuple of commuting isometries on H.
In this note, we always assume that n > 2 is a positive integer. A closed subspace & C H is
said to be joint invariant for (V4,...,V,)if ;S C S, i=1,...,n. We say that (V4,...,V},) is
an n-isometry if V' is a shift, where

V:ﬂw

Recall that an isometry X on H is said to be a shift if X*™ — 0 as m — oo in the strong
operator topology or, equivalently, if X on A has no unitary summand. Moreover, if X is
a shift, then X on ‘H and M, on H%v( x)(D) are unitarily equivalent, where W(X) = ker X*
and H&V( X)(ID)) is the W(X)-valued Hardy space and M, is the multiplication operator by the
coordinate function z on HﬁV(X) (D) (see Section 2).

In this paper we aim to address two basic issues of n-isometries: (i) analytic and canonical
models for n-isometries, and (ii) classification of joint invariant subspaces for n-isometries.
To that aim, we consider the initial approach by Berger, Coburn and Lebow [3] from a more
modern point of view (due to Bercovici, Douglas and Foias [2]). In our approach we will also
follow the recent paper [11].

Our first main result, Theorem 2.1, states that if (Vi,...,V},) is an n-isometry on a Hilbert
space H, then (V4,...,V,) and (Mg,, ..., Mg, ) are unitarily equivalent, where (Mg, , ..., Ms,)
is a canonical model n-isometry on some vector-valued Hardy space H{,(D). The model n-
isometries are defined as follows (see Bercovici, Douglas and Foias [2]). Consider a Hilbert
space £, unitary operators {Uy, ..., U,} on &, and orthogonal projections { P, ..., P,} on £.
Let {®1,...,®,} C Hye) (D) be bounded B(E)-valued holomorphic functions (polynomials)
on D, where

®;(2) = Ui(P;- + 2P) (z € D),
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and ¢ = 1,...,n. Then the n-tuple of multiplication operators (Mg, , ..., Mg, ) on H3(D) is
called a model n-isometry if the following conditions are satisfied:

(a) []ZU'J = U]Ul for all Z,j = ]_, LNy

(b) Uy---U, = Ig;

(c) B+ U PU; = Py + Uy BU; < I¢ for all i # j; and

(d) P+ U RU, + UfUs PUU + - - -+ UfUs - - Ut P Up—q - - - UsUy = Ig.

Throughout the paper, given a Hilbert space H and a closed subspace S of H, Ps will
denote the orthogonal projection of H onto §. We also set

Pg = I — Ps.

In [2], motivated by Berger, Coburn and Lebow [3], Bercovici, Douglas and Foias proved the
following result: An m-isometry is unitarily equivalent to a model n-isometry. Equivalently,
given an n-isometry (Vi,...,V,) on H, one can solve the above equations (a)-(d) for some
Hilbert space £, unitary operators {Uy, ..., U,} on £, and orthogonal projections { P, ..., P,}
on &£. Here, in Theorem 2.1, we give an explicit and canonical solution to above problem.
This also gives a new proof of Bercovici, Douglas and Foias theorem.

On the one hand, our model n-isometry is explicit and canonical. On the other hand,
our proof is perhaps more computational and less conceptual than the one in [2]. Another
advantage of our approach is the proof of a list of useful equalities related to commuting
isometries, which can be useful in other contexts.

Our second main result concerns a characterization of joint invariant subspaces of model
n-isometries. To be precise, let WW be a Hilbert space, and let (Msg,, ..., Mg,) be a model
n-isometry on H3,(D). Let S be a closed subspace of H3,(D). In Theorem 4.1, we prove that
S is a joint (Mg,, ..., Ms,) invariant subspace if and only if there exist a Hilbert space Wi,
an inner function © € Hy, ) (D) (the Beurling-Lax-Halmos inner multiplier corresponding
to the shift invariant subspace S of Hj, (D)) and a model n-isometry (My,, ..., My,) on
H}, (D) such that

S = 0Hy, (D),
and
foralli=1,...,n.

The paper is organized as follows. In Section 2 we study and review the analytic construc-
tion of m-isometries. In Section 3 we study more closely at the n-isometries and examine a
canonical (or model) n-isometry. The proof of the invariant subspace theorem is contained in
Section 4.

2. n-ISOMETRIES

In this section, following [11], we derive an explicit analytic representation of n-isometries.
For motivation, let us recall that if X on H is an isometry, then X is a shift operator if and
only if X and M, on H&v( x) (D) are unitarily equivalent. Explicitly, if X is a shift on #, then

H= O X"W(X),

m=0
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where
WX)=ker X" =Ho XH,
is the wandering subspace for X (see Halmos [7]). Hence the natural map IIx : H — H%V(X) (D)
defined by
Ly (X™n) = 2",
for all m > 0 and n € W(X), is a unitary operator and

My X = M,ITx.
We call IIx the Wold-von Neumann decomposition of the shift X (see [11]).
Now let (Vi,..., V) be an n-isometry. We will use the following notations:
V=11V,
i=1
and )
Vi= 1V,
J#i
and for simplicity of notation we set
W=WwW({),
and ) )
forall e =1,...,n. Clearly
V.=V

Let Iy : H — H,(D) be the Wold-von Neumann decomposition of V. Then
My ViILy, € {M.}',

and hence there exists ®; € Hp,,, (D) such that
Iy Vi = Mg, 1y,

for all 7 = 1,...,n. We now proceed to compute the bounded analytic functions {®;}7_;.
Our method follows the construction in [11]. In fact, a close variant of Theorem 2.1 below
follows from Theorems 3.4 and 3.5 of [11]. We will only sketch the construction, highlighting
the essential ingredients for our present purpose.

Let j € {1,...,n}, we D and n € W. Then

®;(w)n = (Ma,n)(w)
= (v Vjllyn)(w)
= Iy Vin)(w),
But
Iy = PW]- + f/jf/]*,
yields that
Vin = V;Py,n + V'V,
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and thus
[y Vi = Iy (Vi Py + VVin)
=TIy (V; Py, n) + Ty (VVn)
= V; Py, n+ M.V},
as Iy V = M,IIy and V*(V;(I — ‘N/]f/J*)V]*) = 0. Therefore, it follows that
®;(w)n = VP, n +wV.
Since W = ‘N/jo & Wj, we deduce that
©;(w) = Vilyp, + w0V g,

Finally, W = W; @ V;W; implies that

is a unitary operator on V. Therefore
Q;(w) = U]-(PWJ, + wPV%Vj) (w e D).

Note that it follows from the definition of U; that

Us = (ViPyg, + Vi )lw-
This and
(2.1) ViPy, = PwV;
yields

Uy = (PwV; + Vi )lw.
Summarizing the discussion above, we have the following:

Theorem 2.1. Let (Vi,...,V,) be an n-isometry on a Hilbert space H. If (Mg,,..., Ms,)
on HE,(D) is the representation of (Vi,...,V,), then

@,(2) = Uy(Byy, + 2P )lw.
for all z € D, where
Ui = (PwV; + Vi )
15 a unitary operator on W and j =1,...,n.

In the following section, we will explore the coefficients of ®;, j = 1,...,n, in more details.
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3. MODEL n-ISOMETRIES

In this section, we propose a canonical model for n-isometries. We study the coefficients of
the one-variable polynomials in Theorem 2.1 more closely and prove that the corresponding
n-isometry (Mg, , ..., Ms,) on Hy,(D) is a model n-isometry (see Section 1 for the definition).
We again point out that the above assertion follows from Bercovici, Douglas and Foias [2]
and our presentation below is more explicit and influenced by the refinements from [11].

Let (V4,...,V,) be an n-isometry on a Hilbert space H. Consider the analytic representa-
tion (Mg, , ..., Mg, ) on Hy,(D) of (V4,...,V,) as in Theorem 2.1. First we prove that {U;}}_,
is a commutative family. Let p,q € {1,...,n} and p # q¢. As W = ker V*, it follows that

sy =
Then using (2.1) we obtain
UpUy = (PwVy + V) (P Vg + V)lw
= (PwVpPwVy + VPV + PwV V) lw
= (PwVpVo+ T Vi By, + VP V))lw

i#p,q

= (PwVpVy + ( T1 Vi) (P, + VP, Vi))lw

i#p,q

= (PwVpVo + (1T Vi7))lw,

i7#p,q
as (f/qupf/q* + Py, )lw = Iy, and hence
UpUg = UgUp,

follows by duality. Now if I C {1,...,n}, then the same line of arguments, as above, along
with the fact that

Py (11 Vi) Pw = Pw (11 Vi),

iel iel
yields
(3.1) I U; = (Pw(IT Vi) + (1T V;"))|w-
i€l el iel¢

In particular, since Py V| = 0, we have that
i=1
The following lemma may be of independent interest.

Lemma 3.1. Fix 1 <j<n. Let I C{1,...,n}, and let j € I. Then
ILUDRL L) = (1L VOBl 1L Vil

7 el ie\{j} i€I\{j
Proof. Note that W& W, = V;WW; € W. Then
Py, = VI = Vi)V
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By once again using the fact that V*|,,, = Py V] =0, and by (3.1), one sees that
(ITU:) Py (ILUF) = [By(1T Vi) + (I VOV, = VAV V) + Pw(IT V)llw
iel J el i€l iele iel

icl¢

= V) Px P V;
(igc v ) W W<ch )‘W
= VPt Vv
(igc 7,) Wj(igc )|W
= (I VOV = ViVAVE(IT Vi)lw
iel¢ iclc
=( IO Vi)Pw,( 1T V")w.
iel\{7} ien\{j}
This completes the proof of the lemma. [ ]

Let p,q € {1,...,n}, and let p # ¢q. A computation similar to the proof of the above lemma
yields that
UpPAU, = (11 V)P, (11 Vi),
i#p,q i#p,q

Then
(P, + U, Py, Up)

Vo = V,VOVy + (T Vi) Py, (T V)]l
i#p,q i#Dp,q
(I Vz-)(%Vq“erq)(g Vilw
i#p,q

i#p,q

= (I V)( 1T Vi¥)lw

i#p,q i#p,q

= PwPy, Iw,
where W, , = ran (Il Vi). Therefore
(P, + Uy Py, Up) = (P, +U; Py, Ug) < L.
Finally,let 1 <j <n—1and I; = {j,...,n—1}. Then Lemma 3.1 implies
(I U)PR (U7 =[( 1T Vi)( T V7)) — (T VA)(IT V)l
icl; 7 iel; icl; i€l

i61j+1 iEIj+1
This and
1 Cr Y7k *
Pan =,V =VV"
implies that
n—1
Do VDB (1L U9+ B = (= VV )b,
]:1 J ? J

that is .

> (I U)PE (11 UP) + P, = Ly,

=1 '€l ’

Multiplying both sides by T17=! U; on the right and T/~ U; on the left gives

Py +ULP,

n—1 n—1
5, U+ Ui Us P, UsUs + -+ + (igl UZ.*)J.DV%Vn(}:q1 U) = Iy.
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We summarize the above as follows.

Theorem 3.2. If (Vi,...,V,) be an n-isometry on a Hilbert space H, then
(o) U,U, =U,U, forp,q=1,...n,
(0) ITp=1 Up = Iw,
(c) <P1/t + Ui*PI}VjUi) = (Pyéj + UJ*P)}Vin) < Iy,
(d) Pv%vl + Ul*PV%VQUl + UfUQ*P)j:VQUQUl o (! U~"‘)P)}\)H(H?Z_11 U;) = Iy.

(2

As a corollary, we have:

Corollary 3.3. Let ‘H be a Hilbert space and (Vi,...,V,) be an n-isometry on H. Let
(Mg,,...,Mg,) be the n-isometry as constructed in Theorem 2.1, and let (My,,..., My,)
on H% (D), for some Hilbert space W, unitary operators {U;}, and orthogonal projections
{P}", on W, be a model n-isometry. Then:

(a) (Mg,, ..., Ms,) is a model n-isometry.

(b) (Vi,....V,) and (Mg,, ..., Ms,) are unitarily equivalent.

(b) (Vi,...,V,) and (My,, ..., My,) are unitarily equivalent if and only if there exists a
unitary operator W : W — W such that WU; = UW and WP, = BW for alli=1,...,n.

Proof. The first part is a direct consequence of the previous theorem. The second part is easy
and readily follows from Theorem 4.1 in [11] or Theorem 2.9 in [2]. u

Combining this corollary with Theorem 3.2, we have the following characterization of com-
mutative isometric factors of shift operators.

Corollary 3.4. Let & be a Hilbert space, and let {®;}i_; C Hye\(D) be a commutative family

of isometric multipliers. Then

Mz = ﬁ MCP-;
i=1
or, equivalently
H (I)j = Z[g,
i=1
if and only if, up to unitary equivalence, (Mg, , ..., Ms,) is a model n-isometry.

In other words, zI¢ factors as n commuting isometric multipliers {®;};_, € Hpy (D) if

and only if there exist unitary operators {U;}?_; on £ and orthogonal projections { P}, on
& satisfying the properties (a) - (d) in Theorem 3.2 such that ®;(z) = U;(P+ + 2P;) for all
1=1,...,n.

4. JOINT INVARIANT SUBSPACES

Let W be a Hilbert space. Let (Msg,, ..., Ms,) be a model n-isometry on Hj) (D), and let
S be a closed joint (Mg, ..., Ms,) invariant subspace of Hy,) (D), that is

Mp,S C S,

foralli=1,...,n. Then (Ms,|s,..., Ms,|s) is an n-isometry on S, and hence by Corollary
3.3, there exists a model n-isometry (My,,..., Mg, ) on H‘%V(]D)), for some Hilbert space W,
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such that (Vils,...,Vals) and (My,,..., My,) are unitarily equivalent. The main purpose
of this section is to describe the joint invariant subspaces for (Mg,, ..., Mg, ) in terms of the
model n-isometry (My,,..., My,).

As a motivational example, consider the classical n = 1 case. Here the model 1-isometry
is a shift operator M, on H3,(D) for some Hilbert space W. Let S be a non-trivial closed
subspace of Hi,(D). Then by the Beurling [4], Lax [9] and Halmos [7] theorem, S is shift
invariant if and only if there exist a Hilbert space W, and an inner function © € Hg,,, ) (D)
such that

S = OH;, (D).
Moreover, in this case, if we set
V = M]s,
then V on § and M, on Hy, (D) are unitarily equivalent. This follows directly from the above

representation of S. Indeed, it follows that X = Mg : Hj, (D) — ranMg = S is a unitary
operator and

XM, =VX.

Turning to the case n > 1, let S be a closed invariant subspace of H3, (D) and let
(Mg,, ..., Ms,) be a model n-isometry on Hj,(D). From

J

n
M, = M.,

we see that S is a shift invariant subspace of H3,(D) and therefore by Beurling, Lax and
Halmos theorem, there exist a Hilbert space W, and an inner function © € Hy,,, ) (D) such
that S can be represented as

S = ©Hjy, (D),
If 1 <j <n, then ®;§ C & implies that
ran (Mg, Me) C ran Mo,
and so by Douglas’s range and inclusion theorem
®,0 =0V,
for some V; € Hy,, (D). Note that Mg, Me is an isometry and [[©OV; f| = [[¥; f|| for each

(
f € H;, (D). But then

15 £ =111,
and it follows that W; is an inner function, and hence My, = M{Mg, Mg. So

n

[ My, = T1 (Mo Mo, M),

=1

7

Now
M@Mg]\/[q>j Me = My, Me.
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as ©,0H;, (D) C H;,(D). Consequently
n n
1 My, = Mg(n1 Mg, ) Mg
= =

= M3 M, Mo
— MMM,
- sz

that is, (My,, ..., My,) is an n-isometry on Hy,, (D). Therefore, we have the following theo-
rem:

Theorem 4.1. Let W be a Hilbert space. Let (Msg,, ..., Ms,) be an n-isometry on Hy, (D),
and let S be a closed subspace of H3,(D). Then S is a joint (Mg, , . .., Ms,) invariant subspace
if and only if there exist a Hilbert space Wi, an inner function © € Hw, w (D) and an n-

isometry (Mg, , ..., My,) on Hy, (D) such that
S = OH;, (D),
and
0,0 = O,
forallj=1,....,n.

It is curious to note that the content of Theorem 4.1 is related to the question [1] and its
answer [15] on the classifications of invariant subspaces of I'-isometries. We also refer to the
recent paper [10] for a representation of shift invariant subspaces of the Hardy space over unit
polydisc.
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